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Intuitive Mathematical Economics Series
Chain Rule and Derivatives of Functions Defined Implicitly

Sergio A. Pernice1

Universidad del CEMA
Av. Córdoba 374, Buenos Aires, 1054, Argentina

December 26, 2018

Abstract

In this paper we present some elements of calculus for economics: the chain rule and ex-
tended chain rule for calculation of derivatives of composite functions, and differentiation
of functions defined implicitly. The emphasis, as always in this series, is in providing a
pedagogical, intuitive presentation to these topics.

Keywords: Calculus, chain rule, implicit derivatives.

1 Introduction

This paper belongs to the “Series on Intuitive Mathematical Economics”, whose objective is to
present mathematical economics in a more intuitive way than the one usually encountered in
the standard textbooks on the subject. In this case we cover the concepts of differentiation of
composite functions (or the chain rule), and differentiation of functions defined implicitly.

The most important notion of single-variable calculus is that you can approximate any suffi-
ciently smooth function f (x) near a value x = a by a straight line.

f (x) ≈ αx + β (1)

where α = d f (x)/dx|x=a is the derivative of f (x) evaluated at x = a, see Fig. 1.

It cannot be overestimated the importance of this simple equation, that also extends to many
dimensions, in the sense that any smooth vector function f(x1, x2, · · · , xn) of n variables can be
approximated near the point (a1, a2, · · · , an) by the linear function

f(x) ≈ Ax + b (2)
1sp@ucema.edu.ar

The points of view of the author do not necessarily represent the position of Universidad del CEMA.
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Figure 1: The function f (x) = x2 (blue) is approximated by the straight line y = 2x − 1 (purple)
at x = 1. The straight line is tangent at that point.

where the small, bold letters, now represent vectors, and A is a matrix. If you do not fully
grasp equation (2) yet, don’t worry, the extension to many variables will be covered in different
documents. But in this paper, equation (1) is assumed to be known.

Another way of writing the straight line (1) is this:

f (x) = f (a + ∆x) ≈ f (a) + f ′(a)∆x (3)

where ∆x = x − a is assumed small. Comparing (3) with (1), it is clear that β = f (a) − f ′(a)a.
So, the equation of the straight line tangent to f (x) at x = a is:

y = f ′(a)x + f (a) − f ′(a)a (4)

where it is explicit that at x = a, y = f (a) (see problem 1: 1).

Yet another way of writing (1) or (3) is:

∆ f ≡ f (a + ∆x) − f (a) ≈ f ′(a)∆x (5)

Although the notation ∆x (∆ f ) is normally used for finite differences, and dx (d f ) for differen-
tials, we will not distinguish in this work between these notations2.

2Another way of writing all this is in vector notation, whose importance for an intuitive approach to Mathe-
matical Economics cannot be overemphasized and will be addressed in a different work, the meaning of the linear
approximation presented in (1), (3) and (5), is that the vector

~v = x̂ + f ′(a) f̂ (6)

is tangent to the function f (x) at x = a, where x̂ and f̂ are, respectively, the unit vectors in the horizonal (x) and
vertical ( f ) directions in the (x, f ) plane.

HW: “digest” expression (6). As vectors, what is the relation between vector ~v and ~r = ∆x~v = f ′(a)∆x f̂ + ∆x x̂,
for some value of ∆x?

HW: Prove that, in vector notation, the straight line (6) is: ~w(∆x) = ∆x~v + f (a) f̂ + ax̂, for arbitrary ∆x.
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In the rest of the paper we study the form these formulas take for, composite functions in section
2, and for functions defined implicitly in section 3.

2 Differentiating composite functions: the chain rule

If the function h(x) can be written in the composite form h(x) = f (g(x)), the “chain rule” states
that its derivative can be computed as

dh
dx

∣∣∣∣∣
a

=
d f
dg

∣∣∣∣∣
g(a)

dg
dx

∣∣∣∣∣
a

(7)

In words, if h(x) = f (g(x)), the derivative of h with respect to x, evaluated at x = a, equals the
derivative of f with respect to g, evaluated at g(a), times the derivative of g with respect to x,
evaluated at x = a.

For example, if h(x) = xn, dh/dx = nxn−1, but we can write xn = (xr)n/r, so, if g(x) = xr, and
f (g) = gn/r, we have h(x) = f (g(x)), so let us see the chain rule in action:

dh
dx

∣∣∣∣∣
a

= nan−1 (8)

=
d f
dg

∣∣∣∣∣
g(a)

dg
dx

∣∣∣∣∣
a

=
dg

n
r

dg

∣∣∣∣∣
g(a)

dxr

dx

∣∣∣∣∣
a

=
n
r

g
n
r −1

∣∣∣∣∣
g(a)

rxr−1
∣∣∣∣∣
a

= n (ar)
n−r

r ar−1

= n an−r ar−1

= n an−1

in this derivation we used g(a) = ar, according to the definition of g(x) = xr. Comparing the first
and last line we see that, at least in this case, the chain rule works. The objective of this section is
to try to provide the intuition behind the general validity of this rule for any sufficiently smooth
function.

What is the meaning of h(a + ∆x) when h is a function of the form h(x) = f (g(x))? It means
h(a + ∆x) = f (g(a + ∆x)).

So, on the one hand,

h(a + ∆x) ≈ h(a) +
dh
dx

∣∣∣∣∣
a
∆x (9)

= f (g(a)) +
dh
dx

∣∣∣∣∣
a
∆x (10)
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where (9) applies for any smooth function and in (10) we used h(a) = f (g(a)).

On the other

h(a + ∆x) = f (g(a + ∆x)) (11)

≈ f
(
g(a) +

dg
dx

∣∣∣∣∣
a
∆x

)
(12)

≈ f (g(a)) +
d f
dg

∣∣∣∣∣
g(a)

dg
dx

∣∣∣∣∣
a
∆x (13)

Going from (11) to (12) we used the linear approximation (3) for the function g (assumed suffi-
ciently smooth), and from (12) to (13) we used the same linear approximation (3) for f , evaluated

at the point g(a) +
dg
dx

∣∣∣∣∣
a
∆x, which is assumed sufficiently close to the point g(a) for the linear ap-

proximation to apply. This will happen if dg
dx

∣∣∣∣∣
a

is finite and ∆x is itself “sufficiently small”.

So, comparing (10) and (13), we finally arrive at:

dh
dx

∣∣∣∣∣
a

=
d f
dg

∣∣∣∣∣
g(a)

dg
dx

∣∣∣∣∣
a

(14)

which is the chain rule we wanted to prove.

One point that confuses many students is that in going from (11) to (13) we make first an approx-
imation and then another. Will the composition of the two approximations still allow the linear

approximation to work? How small ∆x has to be to ensure that dg
dx

∣∣∣∣∣
a
∆x is “sufficiently small”?

Without given a rigorous proof, since the emphasis here is on intuition and a rigorous proof can
be found in many excellent textbooks, we will help to construct the intuition of why, if the linear
approximation works for f (g) and for g(x), then it should work for f (g(x)).

The idea is very simple, the fact that the linear approximation works for f at the value of the
independent variable g(a) means that for sufficiently small values of ∆g, f (g(a)+∆g) ≈ f (g(a))+
d f
dg

∣∣∣∣∣
g(a)

∆g. Looking at (12) the question then is, can we make ∆g ≡ dg
dx

∣∣∣∣∣
a
∆x sufficiently small? The

answer is yes, as you can show in problem 2: 1. This is the intuition behind the chain rule.

2.1 Extensions of the chain rule

There is an extension of the chain rule, that strictly speaking belongs to multiple variable cal-
culus, but we will present here and “justify” it by simply showing how it works in the example
(8).

Suppose that the function h can be written in the form h(x) = f (g(x), x). Note that f is now a two
variable function f (g, x). This means that part of the dependence on the variable x is through the
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variable g, that itself is a function of x, and part is the explicit dependence of f on x. Then the
derivative of h with respect to x can be computed as

dh
dx

∣∣∣∣∣
a

=
∂ f
∂g

∣∣∣∣∣
g=g(a),x=a

dg
dx

∣∣∣∣∣
x=a

+
∂ f
∂x

∣∣∣∣∣
g=g(a),x=a

(15)

in words, the derivative of h(x) with respect to x, evaluated at x = a, where h can be written
as a function of two variables f (g, x), and g itself is a function of x, equals to the sum of two
terms. The first term is the partial derivative of f (g, x) with respect to g, evaluated at g = g(a)
and x = a, times the derivative of g with respect to x, evaluated at x = a. And the second term
is the partial derivative of f (g, x) with respect to x, evaluated at g = g(a) and x = a. This is an
extension of the chain rule (7).

To see this in action, consider again the example (8), h(x) = xn, but now written as

h(x) = xn = xn−2x2 = (xr)(n−2)/r x2 = g(n−2)/r x2, where g = g(x) = xr (16)

so, the function f , of two variables, is f (g, x) = g(n−2)/r x2.

Now, on the one hand, as in (8), dh/dx|x=a = nan−1. On the other, applying (15),

dh
dx

=
n − 2

r
g(n−2−r)/r x2

∣∣∣∣∣
g=ar ,x=a

rxr−1
∣∣∣∣∣
x=a

+ g(n−2)/r2x
∣∣∣∣∣
g=ar ,x=a

(17)

= (n − 2) (ar)(n−2−r)/r a2ar−1 + (ar)(n−2)/r 2a
= (n − 2)an−1 + 2an−1

= nan−1

This shows that (15) works for our particular case. We leave the general proof, that involves
multi-variable calculus, for another work.

For an even greater extension of the chain rule, suppose that the function h can be written in the
form

h(x) = f (g1(x), g2(x), g3(x), · · · , gk(x), x) (18)

Now f is a function of k + 1 variables, f (g1, g2, g3, · · · , gk, x). This means that part of the depen-
dence on the variable x is through the variables gi, i = 1, · · · , k, that themselves are functions of
x, and part is the explicit dependence of f on x. Then the derivative of h with respect to x can be
computed as

dh
dx

∣∣∣∣∣
a

=

k∑
i=1

∂ f
∂gi

∣∣∣∣∣
g1=g1(a),··· ,gk=gk(a),x=a

dgi

dx

∣∣∣∣∣
x=a

+
∂ f
∂x

∣∣∣∣∣
g1=g1(a),··· ,gk=gk(a),x=a

(19)

=

k∑
i=1

∂ f
∂gi

dgi

dx
+
∂ f
∂x

(20)

(19) is the extended chain rule, and (20) is meant to be interpreted as in (19), but in a shorter
notation where the points of evaluation of the derivatives are assumed understood (see problem
2.1: 1).
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3 Differentiation of functions defined implicitly

Consider in Fig. 2 the circle given by the equation

x2 + g2 = 1 (21)

-1.0 -0.5 0.5 1.0

x

-1.0

-0.5

0.5

1.0

g

Figure 2: Circle x2 + g2 = 1.

In the plane (x, g), (21) implicitly defines two functions: g+(x) =
√

1 − x2 (the upper half circle)
and g−(x) = −

√
1 − x2, (the lower half circle). Note that these two functions can be easily

found from their defining equation (21). Consider for example g+(x), omitting for simplicity the
subindex “ + ”: g(x) = (1 − x2)1/2. Its derivative with respect to x is

dg
dx

= −
x

√
1 − x2

(22)

There is another, more general way, to view the same problem, that works even in cases in which
one can not disentangle from the defining equation the explicit function g(x). Consider in Fig. 3
the two variable function f (x, g) = x2 +g2. A “level curve” of a function of two variables f (x, g),
is the set of points defined by the equation f (x, g) = c. In Fig. 3, one can see the level curves
corresponding to c = 0.3, 1 and 2.

Each of these level curves defines implicitly a function g(x) (see the projection of the level curves
in the (x, g) plane in Fig. 3). So, for each level curve, we have a situation similar to the one in
section 2.1: there must be a function h(x) whose x dependence can be written as h(x) = f (x, g),

6



Figure 3: Two variable function f (x, g) = x2 + g2 and its level curves f = 0.3, 1, 2.

with g itself a function of x, g(x). But equation f (x, g) = c tells us that this function is a constant
c. So, on the one hand we have

dh
dx

= 0 (23)

and, on the other, applying the extended chain rule (15), we have

dh
dx

=
∂ f
∂g

dg
dx

+
∂ f
∂x

(24)

from (23) and (24), ∂ f
∂g

dg
dx +

∂ f
∂x = 0, form where we derive

dg
dx

= −

∂ f
∂x
∂ f
∂g

(25)

This is the general form of the derivative of a function given implicitly in the form f (x, g) = c,
i.e., a level line of f . Note that this formula does not require knowing explicitly g(x), as was the
case in (22).

7



Let us return to our circle, f (x, g) = x2 + g2. ∂ f /∂x = 2x and ∂ f /∂g = 2g, so (25) implies

dg
dx

= −
x
g

(26)

but since in this case we know explicitly that g(x) =
√

1 − x2,

dg
dx

= −
x

√
1 − x2

(27)

as in (22).

—x—

There is yet another, slightly different perspective, to view the same problem. Consider the
function f (x, g), whose level curve f (x, g) = c implicitly defines g(x). The generalization of (5)
to two variables is

∆ f ≡ f (a + ∆x, b + ∆g) − f (a, b) ≈
∂ f
∂x

∣∣∣∣∣
x=a,g=b

∆x +
∂ f
∂g

∣∣∣∣∣
x=a,g=b

∆g (28)

where ∆x = x − a and ∆g = g − b are supposed to be small. The same relation can be written in
the form (3),

f (x, g) = f (a + ∆x, b + ∆g) ≈ f (a, b) +
∂ f
∂x

∣∣∣∣∣
x=a,g=b

∆x +
∂ f
∂g

∣∣∣∣∣
x=a,g=b

∆g (29)

again, valid for (x, g) sufficiently close to (a, b).

In the 3-D space (x, g, z), the plane

z = f (a, b) +
∂ f
∂x

∣∣∣∣∣
x=a,g=b

(x − a) +
∂ f
∂g

∣∣∣∣∣
x=a,g=b

(g − b) (30)

is tangent to the surface z = f (x, g) at x = a and g = b. And equation (29) says that for points in
the (x, g, z) space with x and g close enough to a and b, the function is very well approximated
by the tangent plane, see Fig. 4.

Now, let us refocus on the level curve f (x, g) = c of a function. In equations (28-29), ∆x and ∆g
vary independently, and, as Fig. 4 shows for the particular case f = x2+g2, as they independently
vary, these equations give us an approximation to the change in f . But if we want f (x, g) to be
fixed at the value c, as Fig. 3 shows, we are forced to move in the (x, g) plane only in those points
that make f (x, g) = c. We need ∆ f = 0, and equation (28) therefore indicates that ∆x and ∆g
cannot vary independently. To stay in the level curves, small changes ∆g of the variable g, have
to depend on small changes ∆x of the variable x, so that

∂ f
∂x

∆x +
∂ f
∂g

∆g = 0 (31)
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Figure 4: The two variable function f (x, g) = x2 + g2 and its tangent plane at x = g = 1
√

2
.

In the (x, g) plane this implies that the implicit function g(x) defined by f (x, g) = c is such that
small variations in x and small variations in g should be related so that

∆g
∆x

= −

∂ f
∂x
∂ f
∂g

(32)

But this, in the limit, is precisely the definition of the derivative of g with respect to x, as we had
already seen in (25).

4 Conclusions

We have provided various intuitive perspectives for understanding the chain rule and the deriva-
tive of functions given implicitly by level curves of a function f (x, g). In a different work we
will show economic applications of these technics.
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Problems:

Section 1:

1. Prove (4).

Section 2:

1. Show, first graphically and then algebraically, that if one wants |g′(a)∆x| to be smaller than
a given number ε so as to make sure that the linear approximation of f applies in (12),
then, if g′(a) is finite, one can find a number δ such that if |∆x| < δ, then |g′(a)∆x| < ε.

Section 2.1:

1. Consider the function h(x) = xn, written as

h(x) = xn = xr xsx2 = g1g2x2 = f (g1, g2, x)
f (g1, g2, x) = g1g2x2

g1 = g1(x) = xr

g2 = g2(x) = xs

n = r + s + 2

Prove that the extended chain rule (19-20) works in this example.
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